Robust linear least squares regression
نویسندگان
چکیده
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Robust linear least squares regression Jean-Yves Audibert, Olivier Catoni
منابع مشابه
A robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملRobust Methods for Partial Least Squares Regression
Partial Least Squares Regression (PLSR) is a linear regression technique developed to deal with high-dimensional regressors and one or several response variables. In this paper we introduce robustified versions of the SIMPLS algorithm being the leading PLSR algorithm because of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance matrix between the response variab...
متن کاملOn the Properties of Preconditioners for Robust Linear Regression
In this paper, we consider solving the robust linear regression problem, y = Ax+ ε by Newton’s method and iteratively reweighted least squares method. We show that each of these methods can be combined with preconditioned conjugate gradient least squares algorithm to solve large, sparse, rectangular systems of linear, algebraic equations efficiently. We consider the constant preconditioner A A ...
متن کاملFuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets
Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set. If we have fuzzy observations, using ordinal regression methods can't model them; In this case, using fuzzy regression is a good method. When observations are fuzzy and there are outliers in the data sets, using robust fuzzy regression methods are appropriate alternatives....
متن کامل